Consider a population of fish where the length of a given fish's dorsal spine is determined by a single gene, which is defined by two different alleles. The dominant A allele encodes a long dorsal spine and the recessive a allele encodes a short dorsal spine. The fish is diploid and reproduces sexually. If the number of AA individuals is 500, the number of Aa individuals is 200, and the number of aa individuals is 300, then what is the chance that I will catch a fish with a long dorsal spine from this population?

Consider a population of fish where the length of a given fish's dorsal spine is determined by a single gene, which is defined by two different alleles. The dominant A allele encodes a long dorsal spine and the recessive a allele encodes a short dorsal spine. The fish is diploid and reproduces sexually. If the number of AA individuals is 500, the number of Aa individuals is 200, and the number of aa individuals is 300, then what is the chance that I will catch a fish with a long dorsal spine from this population?



A - .6
B - .7
C - .4
D - .84


Answer: D - .84
To solve this problem you would use the Hardy-Weinberg equation: p^2+2pq+q^2=1


Learn More :